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Two discretizations of a constant coefficient diffusion-convection equation are com- 
pared. It is well known that to obtain acceptable results with centered differencing 
the spatial mesh size must be restricted in proportion to the strength of the convection. 
A similar restriction is shown to apply to the box scheme of H. B. Keller; however, a 
more quantitative examination of the two cases shows that the restriction is less severe 
for the box scheme. The errors in each are characterized by a false damping and phase 
shifting of solutions. It is shown that both effects are less prominent using the box scheme 
than using centered differences for problems with strong convection. The analysis is based 
on the observation that the box scheme can be viewed as having the same spatial dis- 
cretization as the centered difference method, but with some spatial averaging of the 
temporal derivative. Such averaging features are commonly found in finite element 
methods also. 

1. INTRODUCTION 

The success of centered differences in handling problems with diffusion as the 
primary transport mechanism is well known to deteriorate severely when convection 
challenges or surpasses diffusion as the dominant transport mechanism of the 
model. Early studies of this were made by Peaceman and Rachford [l], and Price, 
Varga, and Warren [2]. More recently this phenomenon has received attention 
in a variety of contexts as the following selected references indicate: thermally 
driven flows [3, 41, steady viscous flows [5-71, flows in a porous medium [3, 91. In 
these studies, the remedies sought for the degradation of performance in the 
centered difference analogs are variants of upwind differencing which adapt the 
scheme to the local transport conditions. 
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For one space dimensional problems, a method suggested by Keller [lo] has 
been quite successful in a number of calculations of this type, particularly in fluid 
boundary layer problems [ 11,121. This approach is based on reducing the equations 
of the model to a first-order system, and then using first differences to form a 
finite difference analog. For example, for the simple equation 

a24pt = a%@3 + b(aqax) (1.1) 
we would introduce W(X, t) = U(X, t), z(x, t) = &(x, t)/iYx, and write the equivalent 
first-order system 

awlax = Z, 

azlax = awpt - bz. 
(1.2) 

If we consider one rectangle, or “box,” shown in Fig. 1, of a rectangular grid, 
we can write down the difference version of (1.2) as 

(w(R) - ww~ = 0.5w9 + 4% (1.3a) 

0.5KzW) + z(Q)) - (~8 + zV’))llh 

= 0.5W@) + w(s)) - <w(Q) + wV’)NP 

- @@) + 4s) + z(P) + z(QNi4. (1.3b) 

S R 

b 

P P 
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The difference equations use first-order differences and averages so as to obtain 
a second-order accurate scheme while only coupling unknowns at the comers of 
one mesh “box.” This method has been called the box scheme, and a hint at its 
effectiveness for problems of mixed transport type might be gained from the fact 
that it was discussed in an early paper on the mixed initial boundary value problem 
for hyperbolic systems by Thomee [ 131. 

In this paper, we attempt to indicate why the box scheme may be superior to 
centered difference methods for problems in which diffusion is not the dominant 
transport mechanism. To do this, we shall study the simple model equation, 
Eq. (1. l), for a constant nonnegative parameter, b, and impose boundary conditions 

u(0, t) = 0; u(l, t) = 0 (1.4) 
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on the solution. A significant part of the problem of designing a satisfactory 
numerical method appears to be that of determining a suitable spatial discretization. 
Hence we shall retain the time variable as continuous but study two spatial discreti- 
zations to the uniformly spaced set of lines 

x = ih = x. *3 1 > 0; 
i = 0, l,..., N, h = l/N. 

The semidiscrete problems corresponding to centered differencing and the box 
scheme will be systems of N - 1 linear ordinary differential equations. Our 
comparison of these schemes will be based on a study of the relation of the funda- 
mental modes of the semidiscrete problems with those of the original problem, 
Eq. (l.l), with boundary conditions (1.4), as the parameters b and h vary. 

The transient response from any initial condition can be expressed as a super- 
position of these modes. Hence we expect to be able to draw some conclusions 
for general transient problems about the relation of solutions of the semidiscrete 
analogs to solutions of the original problem. Computations which illustrate some 
of the points of our comparison are discussed. 

2. THE SEMIDISCRETE PROBLEMS 

The centered difference approximation is based on replacing the spatial operator 
L = a2/ax2 + bi3/ax by centered differences. The subscript ‘y” on a function such 
as V,(f) will indicate that it is to be considered the time history of that function 
on the line x = xi of the semidiscrete mesh; V(t) will be the N - 1 vector with 
components V,(t), V2(t),..., V,+i(t). Then the centered difference semidiscrete 
problem can be written as the initial value problem 

&(t)/dt = AV(t); vm = Gd, j = 1, 2 ,..., N - 1, (2.1) 

where A is the (N - 1) x (N - 1) tridiagonal matrix with diagonal entries of 
-2/h2, superdiagonal entries of (1 + /3)/h2, and subdiagonal entries of (1 - ,B)/h2, 
for (3 = bh/2. 

In its form (1.3), the box scheme is the time discretization of 

WA0 - W,-dWh = W-U0 + zdt>), (2.2) 
(Z&) - Z,-,(t))/h = OS(W,‘(t) + F+&(t)) - O.Sb(Z,(t) + Z,-&)). 

If, for two adjacent boxes, we add the second of these equations together, and 
eliminate the resulting spatial averages of Z using the first equation, we shall get 

2Wi+1W + wi-&I - 2WWh2 

= OS(FV;+#) + 2W,‘W + w;‘-&)) - b(W,+,(t) - Wj-,(t))/h. 
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This can be written as the initial value problem 

c-1 dW(t)/dt = A W(t); W(O) = %W, j = 1, 2 ,..., N - 1, (2.3) 

with A as in (2.1) and C-l being the tridiagonal matrix with 4 for its diagonal 
entries and super-and subdiagonal entries of &. 

Hence for this problem, the box scheme can be viewed as being the centered 
difference scheme modified by a space averaging of the time derivative. A similar 
observation has been made by Ackerberg and Phillips in [12] and has been incor- 
porated into their computational procedure. When Gale&in methods of spatial 
discretization are used, a similar averaging of the terms in the time derivatives 
occurs, (e.g., [16]), For finite element methods, the matrix corresponding to C-l 
is termed the mass matrix (see [14]). 

3. MODAL ANALYSIS 

The solutions of (l.l), (2.1), and (2.3) can all be written as linear combinations 
of fundamental modes characteristic of each problem. The mth mode of (1.1) 
restricted to the mesh points is 

U(“)(t) = iYm) exp(y,t) (3,la) 

where the spatial part Urn) is a vector with components Ujm) and 

U+) = exp(--bx,/2) sin(mrx.) 3 3 3 (3.lb) 
and time constants 

Y rn= -(m27r2 + b2/4). (3.lc) 

Modes (3.1) show that an increasingly pronounced boundary layer forms at 
x = 0 (i.e., at the outflow boundary) as b increases. 

Similarly, from the eigenvalues and eigenvectors of A and CA, we can obtain 
a fundamental system of modes for (2.1) and (2.3). We shall use y,(A) and y,JCA) 
for the eigenvalues of A and CA, respectively, and Vm) and Wfnz) for the corre- 
sponding eigenvectors. Then the modes, 

V(“)(t) = Vm) exp(y,(A) t), (3.2) 
Wcm)(t) = Wfnt) exp(y,(CA) t), (3.3) 

are semidiscrete analogs of (3.1). Some standard techniques for determining the 
spectra of tridiagonal Toeplitz matrices given in the Appendix are used to obtain 
the following expressions, using r& = mrh, j3 = bh/2, 

y,(A) = -h-2{4 sin2($,/2) + 2 cos 4&l - (1 - ,B2)l12)}, (3.4a) 
ym(CA) = -hP2{4 tan2(&,J2) + 2 cos 9$J4 - (16 - 4p2 sin2 $,J1/2)/sin2 $m}. 

(3.4b) 
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For the eigenvectors, we have 

Vjcm) = ((1 - /3)/(1 + j3)}““sin(m7rxj), (3.5a) 

w?’ = ((1 - fi - h2y,(CA)/4)/(1 + fl- hzym(CA)/4)}i’2 sin(mrrxJ. (3.5b) 

Obviously, the parameter /I = bh/2 plays an important role in these expressions. 
Looking at the time constants for the centered difference scheme, we see that the 
y,,@)‘s are real only if / p 1 < 1, and they lie in the interval of length 4(1 - /32)l/2/h2 
centered on -2/h2. If 1 /3 I < 1, we can write (3.5a) as 

Vjcm) = exp(--b(A) xJ2) sin(mnx,), (3.6) 

where 

b(A) = h-l Ml + PM1 - /$I (3.7) 

to show its correspondence with the spatial variation of Ujm) in (3.1). If 1 fi 1 = 1, 
y&t) = -2h-2; and if 1 /I I > 1, ym(A) becomes complex with Re(y,(A)) = -2h-2, 
and I’jcm) becomes complex as well. The qualitative description of these properties 
of the centered difference have been discussed by Price, Varga, and Warren in [2]. 
They use the concept of oscillation matrices and their analysis extends to variable 
coefficient problems. It is apparent that if p > 1 matrix A ceases to be an oscillation 
matrix. Some implications of this have been discussed in a recent note by Hirsh 
and Rudy [5], who refer to 28 as the cell Reynolds number. 

The variation of the time constants of the box scheme is different and more 
complex. The y,JCA)‘s are real if / /3 I f 2, and, if I p I grows beyond 2, they turn 
complex, two at a time, starting with the pair closest to the index [N/2]. More 
precisely, for specific index k, if /3 > 2/l sin(knh)l, then ya(CA) is complex, but 
if / /lI < 2/l sin(knh)I then yk(CA) is real and negative. Thus, wjrn) is real for 
1 p 1 < 2/l sin(mrh)l and 

where 

Wicm) = exp(--b&CA) xJ2) sin(m9rx,), (3.8) 

b,(CA) = k2 Ml + B - h2y,(CA)/4)/(1 - B - h2y,(CWW, (3.9) 

as compared with (3.lb) and (3.6). That is, the lower modes, which decay more 
slowly in time and hence are the most important modes, may remain real for a 
wider range of I /I I, even for / p I beyond 2. 

To summarize then, as p increases the qualitative similarity between the modes 
of the semidiscrete problems and those of the original problem breaks down. 
However, the breakdown for the centered difference scheme, which occurs at 
p = 1, occurs for all modes simultaneously. This is quite drastic compared to the 
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graduated breakdown occurring for the box scheme which starts when /3 = 2 
but in which the (usually dominant) lowest order modes are the “last to go.” 

We can get a more quantitative comparison of these modes, when they are real, 
by expanding their parameters y&4), ym(CA), b(A), and b&CA), in power series 
in fi and h. The results are 

y&4) = ym + (m47p/12) h2 + (m2r2/2 - b2/16) p2 + O(Is4 + h4), (3.1Oa) 

y&CA) = ym - (m4r4/6) h2 + (mG2/2) ,6” + OG4 + h4). (3.10b) 

and 

44) = b + b/W + OG4), (3.1 la) 

b,(U) = b + b(f12/12 - m2,rr2h2/4) + O(h4 + 83. (3.11b) 

For the simple heat equation with b = 0, (3.10) shows that the leading term of 
the expansions of the error 1 y&4) - ym 1 is half that of 1 y&CA) - y,,, I. A more 
significant observation is that the leading terms (at least) of the expansion of the 
error in ym(CA) in p and h are independent of b, while those of y&4) have coeffi- 
cients proportional to b2. Moreover, (3.11) shows that for larger 1 b 1, the box 
scheme is better in approximating the mode shape constant, b, for a fixed h. These 
observations suggest that the centered difference scheme should be superior for 
b = 0 or b small, but the box scheme should be better for larger b. 

In Fig. 2, a graph is given showing the variation of errors with B. The variation 
of B from 0.2 to 1.2 by 0.05 was obtained by fixing h at 0.02 and varying b from 20 

FIG. 2. Variation of relative errors with beta. 
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to 120 by 5. The four curves which appear represent the errors in the propagation 
of two different initial proties by each of the two methods. The initial profiles 
are those of the first and third modes of (1.1) and the error is the relative error 
averaged over the left most third of the meshpoints at time t = l/y, for the lirst 
mode and t = l/y, for the third mode. Several similar measures of error were 
tried but no significant difference between them was noticed. 

4. PSEUDOMODES 

For the pure diffusion case (b = 0), the initial profiles of the modes for a fixed 
wavenumber are the same for all three problems. Simple computations show that 
the error in propagation of one of these proties by the centered differences scheme 
is about half that of the box scheme, and has the opposite sign as predicted by 
(3.10). 

However, for b # 0, the initial spatial profiles of the modes of the mth wave- 
number do not coincide for any pair chosen from the original or the two semi- 
discrete problems. This complicates the designing of computations to demonstrate 
the features of the preceding modal analysis. We can, however, find quite simple 
analytic forms for certain solutions of the semidiscrete equations which have the 
same initial profile exp(-bx/2) sin(mnx), as the mth mode of the continuous 
problem. These solutions do not satisfy the boundary conditions exactly. However, 
their values at x = 0 and x = 1 remain small for short times in a way made more 
precise by their expressions given below. Hence we may expect them to approximate 
the solutions of the semidiscrete problems with initial profile exp( - bx/2) sin(mnx) 
at least away from the boundaries. These approximate solutions we shall call 
pseudomodes. 

The mth pseudomode for the semidiscretizations of the centered difference 
scheme, (2.1), and the box scheme, (2.3), we shall denote by Vscrn)(t) and w.W(r), 
respectively. 

VP) = exp(-bx/2) sin[mnx + Z,(A) r] exp(R&I) r), (4.1) 

W+ = exp(-bx/2) sin[m?rx + Z,(U) r] exp(&(CA) r). (4.2) 

The mode parameters R,(A) and Z,(A) for the centered difference scheme are 

&d-4 = W-2 + cos(vLMexP@~ + exp(--15N - B(exP@) - ==d-PNII, 
(4.3a) 

U4 = Wsin(Cm)[8kw@,s) + exp(-PI) - (exp@) - exp(-p))]}, (4.3b) 
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and those for the box scheme are 

MC4 = vM4 P + Lb4 4MP2 + 439 (4.4a) 

MW = A(4 P - Rd-4) 4Y(P2 + 433 (4.4b) 

P = B + ~0s A&xpCB> + exp(-PW4 (4.4c) 

4 = --sin +&xp@~ - exp(-FW. (4*4d) 

These parameters are determined by identifying them as the real and imaginary 
parts of a complex parameter 01 = R + iZ. Then 01 is determined, for the centered 
difference discretization, by requiring y(x, t) = exp(-k/2 + irmrx + at) to 
satisfy 

dy(x, f)/df = h-Y y(x + h, t) - 2y(x, t) + y(x - h, t>> 
+ NJ@ + k Q> - u(x - h, ww (4.5) 

The equating of real and imaginary parts of both sides of (4.5) yields (4.3). For 
the box scheme, cy is determined by requiring JJ(X, t) to satisfy (4.5) with the left 
side replaced by 

0.25 u'y(x + h, t)/df + 0.5 dy(x, t&if + 0.25 dy(x - h, t)/df. (4.6) 

To see the connection between these solutions, and the modes of the original 
problem, we again expand the mode parameters R and Z in power series in h 
and /3 to get 

R&i) = y,,, + (m4r4/12) h + (m‘W/2 - b2/16) /3” + OG4 + h4), (4.7a) 

WC4 = 3/m - (m4r4/6) h2 + (m27r2/2) /I2 + O(p4 + h4). (4.7b) 

M4 = m7@p2/31 + W?, (4.8a) 

ZnL(C,4) = m~[b@~/12 - m%r”h”/4)] + O(h4 + p4). (4.8b) 

It is interesting to note that the leading error terms in R&4) and R,(CA) are 
exactly the same as the corresponding leading error terms in the time constants 
for the semidiscrete modes given in (3.10) (errors meaning deviations from the 
time constants of the original problem). 

The pseudomodes are intended to serve as models for predicting the propagation 
of the continuous modes’ inital profiles by the semidiscretizations. Consider, for 
example, the leading error term in j3” for R&t). It predicts an erroneous damping 
if m2r2/2 < b2/16 which depends on b and which is most severe in the modes of 
smallest wavenumber. The corresponding term of the error in R&CA) predicts 
an amplification of the modes which is uniform in b, and increases with the wave- 
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number. Similarly, the terms I,(A) and I,(U) represent erroneous phase shifts 
in the time evolution of the discretized solutions. The leading terms of these phase 
shifts predict that, at least for the lower wavenumbers, the phase shift in the box 
scheme is less than a quarter of that for the centered difference scheme. However, 
as will be seen in Figs. 5-8 (discussed below) these two time behavior “errors” 
compensate for each other so that the pseudomode is substantially closer to the 
continuous problem’s mode than the discrete problem’s mode is, and the same is 
true of the approximate solution. 

We shall examine a particular but representative case in more detail. We choose 
b = 60, and h = 0.02, so that /3 = 0.60. In this case, the mode parameters for 
the first and third modes are: 

(i) for the exact modes, b = 60., y1 = -909.9, y3 = 989.0; 

(ii) for the centered difference method modes, b(A) = 69.32, y,(A) = 
-1007.9, y&4) = -1070.9, and for its pseudomodes, R,(A) = -990.6, 
R,(A) = -1053.8; 

(iii) for the box scheme, b,(U) = 61.84, b,(CA) = 61.37, yl(CA) = 
-908.2, y3 = -974.1, and f or its pseudomodes, R,(CA) = -907.6, R,(U) = 
-974.3. 

The spatial profiles of these modes are shown in Figs. 3-8. These profiles are 
taken for t = l/y, for the first modes and t = l/y, for the third modes. In each 

--- 
LI I I I I IT+* - 

-- 0.0 0.02 006 0.10 0.14 0.1 8 

FIG. 3. Profiles of continuous and centered difference modes (lower curve, first mode; upper 
curve, third mode). 
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case, 20 time steps were used to reach the final time from t = 0. The figures show 
four graphs: 

(i) the mode of the exact problem (3.1) shown as a dashed line, 
(ii) the pseudomode for the method shown as a dashed-dotted line (4.1,4.2), 

BOX SCHEME 

Continuous mde - - - - 

Pseudo mode -y---m- 

Discrete mode + 

Discrete solution X 

I I 1 I 1 

0.0 0.02 0.06 0.10 0.14 0.18 0.22 

FIG. 4. Profiles of continuous and box scheme modes (lower curve, f?rst mode; upper curve, 
third mode). 

0.4 r 

FIG. 5. Expanded profiles. First mode-centered differences. 
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(iii) the mode of the (semidiscrete) method shown as a small cross at the 
spatial mesh points, (3.5), and, 

(iv) the solution of the initial value problem (2.1, 2.3) by the method (initial 
values equal to those of (i) and (ii)) shown as large “x” at the spatial mesh points 

There are several different points of comparison that can be made here. The 
pseudomodes, (ii), are intended to be an analytical model for the computed 

0 0.2 0.4 0.6 0.8 I.0 
X 

FIG. 6, Expanded profiles. First mode-box scheme. 

0.2 

Continuous made 

" 0.4 
t O~rcrete mode + 

t 
FIG. 7. Expanded profiles. Third mode--centered differences. 
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FIG, 8. Expanded profiles. Third mode-box scheme. 

solution, (iv), of the initial value problem. This latter is, of course, the numerical 
approximation by the method to (i). The comparison of the mode of the exact 
problem, (i), to the corresponding mode of the semidiscrete problems, (iii), indi- 
cates the degree of accuracy to which the continuous mode, (i), can be approximated 
by the discrete mode, (iii), of the method. If the discrete mode, (iii), approximates 
poorly the continuous mode, (i), we expect poor agreement between the numerical 
solution, (iv), and the exact solution, (i). Actually, Fig. 3 shows that this indeed 
happens to the central dilferencing scheme. On the other hand, Fig. 4 shows good 
agreement between both the discrete mode and the discrete solution to the con- 
tinuous mode, in the case of the box scheme. In both Figs. 3 and 4, the pseudo- 
modes predict the discrete solutions reasonably well, showing their capability as an 
analytical model for the discrete solution. In fact, the analytical forms (4.1) and 
(4.2) of the pseudomodes can further quantify the errors in terms of damping or 
amplifying, and phase shifts in the numerical solution. To show this, we scale up 
each of the profiles (i)-(iv) by the factor exp(bx/2) and examine the resulting 
“expanded” profiles as shown in Figs. 5-8. As explained earlier, for a fixed time t, 
the damping error in R,(A) (centered differences), is most severe in the modes of 
smallest wavenumber, whereas R,(CA) (box scheme) results in an amplification 
of the modes, which is uniform in b but increases with the wave number. Super- 
imposed on these errors are the phase-shift errors due to I,(A) and I&CA) in 
(4.1) and (4.2) which are most evident in Fig. 7, the third mode of the centered 
difference approach. 

A major motivation for examining the modes of a problem is to be able to make 

58Wl4-7 
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“educated guesses” about the behavior of the more general initial value problems 
which are linear combinations of modes. In comparing our approximating semi- 
discrete problem to its continuous counterpart, the notion of “corresponding 
mode” is fairly clear on a qualitative basis (e.g., number of interior zeros). But 
there is also some implication that if the restriction to the mesh lines of a general 
initial value problem were 

#i(t) = c uJp(t), (4.9) 
m 

then the semidiscrete approximation could be thought of, at least for intuitive 
guess purposes, as 

vi(t) = c a,vp’(t) (4.10) 
m 

or 
w&) = c a,Wi’“‘(t). (4.11) 

m 

The errors in the semidiscrete mode parameters (primarily b(A) and b&CA)) 
indicate that the corresponding modes are, in fact, too dissimilar to provide much 
of a basis for the approximations in (4.10) or (4.1 l), at least for the range of mesh 
sizes yielding a few percent relative error. However, the correspondence between 
the propagation by the numerical method of the initial mode shape for the con- 
tinuous problem and the method’s pseudomode seems quite close. Hence we feel 
that thinking in terms of expansions in pseudomodes, i.e., 

or 

provides a viable base for “educated guessing.” 
It appears on this basis that as the convective terms of a one-dimensional trans- 

port model become more significant the box scheme enjoys an increasing accuracy 
advantage over centered differencing for the same mesh. It should be noted here 
that the box scheme has the more significant practical advantage of retaining 
second-order accuracy on general nonuniform meshes. The qualitative behavior 
of the time constants for the centered difference scheme with nonuniform meshes, 
i.e., becoming complex when p > 1, was established in [2]. (Here /3 varies with the 
position in the mesh.) The authors have been able to show that the time constants 
for the box scheme, for variable meshes, are real and negative if /I < 1 (again, 
for local /3); however we have been unable to establish this qualitative fact for the 
range 0 < /I < 2 as suggested by this analysis of the uniform mesh case. 
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Alternatively, these observations can be viewed as a beneficial effect resulting 
from a particular spatial averaging of the time derivatives of the semidiscretization. 
Similar averagings are done by the “mass” matrix of variational semidiscretizations 
using basis functions of small support (e.g., [16],) and a discussion of these is made 
in [17]. 

APPENDIX 

We shall outline the proofs for the expressions in (3.4) and (3.5), and for the 
expansions in (3.10), (3.11), (4.7), and (4.8). We first derive the expressions (3.4) 
and (3.5), using the following lemma on the eigenvalues and eigenvectors of a 
tridiagonal Toeplitz matrix. 

LEMMA A. Let L be an (N - 1) x (N - 1) tridiagonal Toeplitz matrix such 
that Li,+I = I, , i = 2 ,..., N - 1; Li,i = lZ, i = I,..., N - 1; Li,i+I = I,, 
i = l,..., N - 2; Li,l = 0, otherwise. Let ym be the mth eigenvalue of L and Yfnz) 
be the corresponding eigenvector with components Yjm’, j = l,..., N - 1. Then, 

Y - I, + 2(1&‘/2 cos $bm , m- 

Yjm’ = (Zl/1,)i’2 sin( j&J, j = I,..., N - 1, 

where 4m = mr/N. 

(B.1) 

03.2) 

For a proof of this lemma, we refer the reader to [15]. 
Now, (3.4) follows immediately. For the box scheme, we observe that the eigen- 

value problem, 
CA Wfm) = y,JCA) Wtm), (B-3) 

is identical with the generalized eigenvalue problem, 

A Wcm’ = ym(CA) C-lWfm’, (B-4) 

or we can consider the problem 

(A - y&CA) C-‘) Wjcm’ = 01, Wj(‘$ (B.5) 

and ask for 01, = 0, m = l,..., N - 1. Using Lemma A, and after discarding 
some extraneous roots in the equations ~1, = 0, we obtain (3.5). 
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